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Receptivity of pipe Poiseuille flow 
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Department of Fluid Mechanics and Heat Transfer, Tel-Aviv University, Tel-Aviv 69978, Israel 

(Received 3 February 1995 and in revised form 29 November 1995) 

The receptivity problem is considered for pipe flow with periodic blow-suction through 
a narrow gap in the pipe wall. Axisymmetric and non-axisymmetric modes (1, 2, 
and 3) are analysed. The method of solution is based on global eigenvalue analysis 
for spatially growing disturbances in circular pipe Poiseuille flow. The numerical 
procedure is formulated in terms of the collocation method with the Chebyshev 
polynomials application. The receptivity problem is solved with an expansion of 
the solution in a biorthogonal eigenfunction system, and it was found that there is 
an excitation of many eigenmodes, which should be taken into account. The result 
explains the non-similar character of the amplitude distribution in the downstream 
direction that was observed in experiments. 

1. Introduction 
Reynolds (1883) discovered that a laminar pipe flow becomes a turbulent one 

when the Reynolds number is large enough. Although numerous theoretical and 
experimental investigations of pipe flow have been carried out, the nature of the 
transition process is not yet understood. 

Analytical and numerical methods in theoretical studies of flow stability have been 
used. The classic hydrodynamic stability theory ( Lin 1955; Drazin & Reid 1981) 
deals with so-called normal mode analysis. It means, in an example with axisymmetric 
disturbances, that disturbance of the stream function is given by 

(1.1) 

where a is a wavenumber, o is a frequency. The amplitude function @ satisfies an 
ordinary differential equation with boundary conditions, and a relation between a 
and o is determined from the boundary value problem. There are two approaches: 
the temporal and the spatial stability theories. According to the temporal theory, 
the disturbance is considered as growing with respect to time. The wavenumber a 
is a real parameter and the frequency o is a complex one. The disturbance grows 
when Im(o) > 0. In the spatial stability theory, the disturbance is considered as 
growing in the downstream direction. The frequency o is a real parameter and the 
wavenumber a is a complex one. The downstream propagating disturbances grow if 
Im(a) < 0. The classic hydrodynamic stability theory assumes that the existence of 
a normal mode growing in the downstream direction means instability of the flow. 
The theory explains a laminar-turbulent transition as being caused by amplification 
of the mode. 

Almost all the theoretical results concerning the linear stability of pipe Poiseuille 
flow have been obtained by using the temporal theory. We refer to the studies of 
Sex1 (1927 a h ) ,  Pretsch (1941), Pekeris (1948), Corcos & Sellars (1959), Lessen, Sadler 

Y = @ ( r )  exp(iaz - iot), 
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& Liu (1968), and Salwen & Grosch (1972), and Salwen, Cotton & Grosch (1980). 
The spatial stability was investigated by Gill (1965) analytically and by Garg & 
Rouleau (1972) numerically (a special case of the spatial theory with stationary 
disturbances was published by Bramley 1986). The theoretical results showed that a 
parabolic velocity profile is stable with respect to axisymmetric and non-axisymmetric 
infinitesimal disturbances. 

Owing to the failure to find an instability of a parabolic velocity profile, it was 
suggested that the laminar-turbulent transition could be explained by a particularity 
of a flow at the inlet (Tatsumi 1952). The important role of flow development 
at the inlet was proved in the experiment by Wygnanski & Champagne (1973). 
Based on these results, Morkovin & Reshotko (1989) formulated in their review: 
“Experimenters agree that the most likely bypasses are to be found in the linearly 
weakly unstable slowly accelerating boundary layers before parabolic flow is fully 
developed.” 

Earlier, Fox, Lessen & Bhat (1968) found in their experiment that disturbances 
may grow in fully developed pipe flow, but for a long time their results have been 
considered as unreliable. Recently, Darbyshire & Mullin (1995) established that there 
is a critical amplitude of disturbances that causes transition to turbulence, and that this 
amplitude depends on the Reynolds number. The experimental results qualitatively 
agree with the numerical modelling of onset of turbulence (Boberg & Brosa 1988). 
Probably, there is a strong nonlinear mechanism of transition to turbulence in fully 
developed pipe flow. 

Nevertheless, new ideas have been proposed in order to determine the growth 
of small disturbances in circular laminar pipe flow. Gustavsson (1989) consid- 
ered the possibility of direct resonance between pressure eigenmodes and stream- 
wise velocity components. Since certain eigenvalues obtained from the equation 
for pressure disturbance may coincide with eigenvalues of the uniform equation 
for streamwise velocity disturbance, an algebraic growth may occur at the initial 
stage of disturbance development. A more general mechanism of transient growth 
was investigated by Bergstrom (1992). The results for optimal transient growth in 
pipe Poiseuille flow were published by Bergstrom (1993~) and Schmid & Henning- 
son (1994). To establish the possibility of the existence of corresponding initial 
data in a real experiment, a physical model of disturbance excitation should be 
considered. 

In our opinion, there are not yet sufficient experimental investigations of devel- 
oped pipe flow at the linear stage. The experiments with axisymmetric disturbances 
induced artificially in the developed part of pipe flow (Leite 1959; Reshotko 1958; 
Kaskel 1961) showed that the disturbances decay in the downstream direction, but 
the adequacy of the observed experimental data in the linear theoretical model 
has not been proved. Leite (1959) observed that the radial distribution of dis- 
turbance amplitude depends on downstream distance. In this case, it is not clear 
which kind of disturbance may be excited in experiments; thus a receptivity prob- 
lem should be solved for the experiment in order to analyse results. Recently, 
Bergstrom (1993b) investigated experimentally the evolution of the localized distur- 
bance in a pipe flow. In this case it is also unknown which kind of disturbance 
is excited, so the receptivity problem should be solved in order to interpret the 
results. 

The receptivity problem is the problem of determining the normal mode am- 
plitude under the influence of an external force on a flow. Morkovin (1969) 
and Reshotko (1976) clarified an important role of the receptivity problem in a 
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laminar-turbulent transition process. The formulation of the problem resulted in 
intensive investigations of various mechanisms responsible for unstable wave ex- 
citation. The first theoretical result was obtained by Gaster (1965) for the nor- 
mal mode generation as a result of a localized forcing at the bottom of a two- 
dimensional boundary layer; but extensive consideration of the receptivity prob- 
lem was begun only at the end of the 1970s. At present, we have a vast bib- 
liography on this subject (Zhigulev & Tumin 1987; Goldstein & Hultgren, 1989; 
Choudhary 1993). Publications covering theoretical models may be categorized 
according to their underlying principles as follows : (i) the asymptotical analy- 
sis of the linearized Navier-Stokes equations with the Reynolds number tend- 
ing to infinity; (ii) the direct numerical simulation; (iii) the numerical methods 
based on expansion of a solution in spatial eigenfunctions of the linear stability 
problem. 

Tumin & Fedorov (1984) analysed the receptivity problem with a localized distur- 
bance at the bottom of a two-dimensional incompressible boundary layer flow. The 
problem of a compressible boundary layer was considered by Fedorov (1984). Their 
method of solution is based on expansion of the linearized Navier-Stokes equation 
solutions in a biorthogonal system of eigenfunctions. This method has provided 
a convenient algorithm of normal mode amplitude calculation for various external 
forces. Nevertheless, there was an obstacle to extending this method to the super- 
critical frequencies when an exponential growth in the downstream direction exists; 
so some additional suggestions had to be made in order to choose a contour in the 
Fourier-Laplace transform inversion. Ashpis & Reshotko (1990) solved the problem 
of the correct transform inversion. Their result allows one to establish an inversion 
contour deformation for the supercritical frequencies and provides a basis for ap- 
plication of the biorthogonal technique. In a pipe flow, no difficulty in the Fourier 
transform inversion exists since there is no eigenmode which becomes unstable in a 
band of frequencies ; therefore, the biorthogonal eigenfunction technique is especially 
convenient for the numerical analysis. 

The object of the present paper is to consider the receptivity problem for a pipe flow 
with axisymmetric and non-axisymmetric disturbances forced by a localized periodic 
blow-suction through a narrow gap in a wall. As a result, we hope to understand 
qualitative features of disturbances that may be observed in a real experiment. 

Briefly, the structure of the paper is as follows. The eigenvalue problem is for- 
mulated in § 2.1. The numerical results for axisymmetric and non-axisymmetric 
disturbances are presented in 5 2.2. The receptivity problem is formulated in 3.1. 
In 3 3.2 the biorthogonal eigenfunction system is introduced. The problem solution 
is proposed in 9 3.3, and numerical results are described in 3.4. The summary of 
the paper is given in 94. In Appendix A we present the matrices used in the analysis. 
The boundary conditions for the numerical treatment of the adjoint problem are 
discussed in Appendix B. 

2. Eigenvalue problem for circular pipe Poiseuille flow 
2.1. Formulation of the problem for spatially growing disturbances 

Since we are going to consider the receptivity problem as the boundary value problem 
with a prescribed frequency, we expect that the solution will be obtained as a sum of 
spatial normal modes. Thus, we begin our analysis with the eigenvalue problem for 
a pipe flow by using the spatial theory. 
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We consider a laminar incompressible flow in a circular pipe. The linearized 
Navier-Stokes equations for radial, tangential and axial velocities u, v, w and pressure 
disturbance p are written in the cylindrical-polar coordinates ( r ,  8, z )  as 

where 

W(r) = 1 - r2. (2.6) 
We use the following reference scales: centreline velocity W,,, and radius of the 
pipe a. Pressure is normalized by eW,,,' and the Reynolds number is defined as 
Re = aW,,,/v. The disturbances u , v , w , p  are assumed in the form: 

(u( t ,  r ,  8, z),v(t, r ,  8, z ) ,  w ( t ,  r, 6, z ) ,p ( t ,  r ,  8, z ) )  = (ti(r, z),G(r, z ) ,  8 ( r ,  z),j?(r,z))ei"+wf), 

where parameter n is an integer azimuthal index. We introduce the column vector A 
with six elements: A1= ti; A2= a t i l a z ;  A3= 8; A4= j3; A5= 6; A6= aG/az. Substituting 
(2.7) into (2.1)-(2.4), we obtain the following system of equations: 

(2.7) 

where H1,H2 and H 3  are 6 x 6 matrices. The non-zero elements of these matrices are 
presented in Appendix A. The fourth equation in the system (2.8) is the z-momentum 
equation where the derivative a2w/az2  was substituted by the derivative obtained 
from the continuity equation. 

In the spatial theory of hydrodynamic stability, the frequency w is considered as a 
real value and solution of the system (2.8) is assumed to be of the form: 

A(r ,  z) = Aa(r)elUz. (2.9) 

The eigenvector A,(r) satisfies the following system of ordinary differential equations : 

dA, d2 A, 
dr dr2 ' iaA, = HIA, + H ~ -  + H ~ - -  (2.10) 

On a wall, the no-slip condition is assumed for the velocity components: 

r = 1 : Al,  = A3, = A5, = 0. (2.11) 

Owing to the definition of the second and sixth components of the vector A ,  we 
obtain on a wall: 

r = 1 : AZG( = A6, = 0. (2.12) 
When r + 0, a special consideration is required for the numerical procedure to obtain 
a finite solution for the centreline. Khorrami, Malik & Ash (1989) formulated the 
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Im(4  
n = 0 0.51998925173 0.02083549388 Garg & Rouleau (1972) 

0.51998925171 0.02083549388 Khorrami et al. (1989) 
0.51998925173 0.02083549388 Present method ( N  = 60) 
0.51998925173 0.02083549388 Present method ( N  = 120) 

n = 1 0.5352510831 0.0172276439 Garg & Rouleau (1972) 
0.5 3 525 108 0.0 1722763 Khorrami et al. (1989) 
0.5352510831 0.0172276439 Present method ( N  = 60) 
0.5352510831 0.0172276439 Present method ( N  = 120) 

TABLE 1. Eigenvalues for the least-stable modes n = 0, n = 1. Re = 10000; w = 0.5. 

boundary conditions as 

n = 0 ; r  -+ 0 : Al, = A2, = A &  = A5, = A &  = 0; (2.13) 

n = f 1 ; r  -+ 0 : 4 4 1 ,  +As,  = 0 ;  -iA2, fA6, = 0, (2.14) 

A3 = A4 = 0, -2iA; +-A’, = 0; (2.15) 

(2.16) 

The numerical method was formulated in terms of the Chebyshev collocation 
approximation in the form suggested by Khorrami et al. (1989). The spectral technique 
has been applied according to Liang & Reshotko (1991). 

To determine the number ( N  + 1) of Chebyshev polynomials in the approximations, 
we compared the eigenvalues when N = 60 and 120. The results obtained show that 
we can choose N = 60 for the first few tens of eigenmodes. The closer to the real axis 
of a, the better the accuracy. 

Comparison of the eigenvalues for the least-stable modes n = 0 and n = 1 at 
R = 10000 and w = 0.5 with the results published by Garg & Rouleau (1972) and 
Khorrami et al. (1989) is presented in table 1. 

JnJ > 1 ; r  --+ 0 : Al, = A2, = A3, = A4, = Asa = 0. 

2.2. Numerical results 

2.2.1. Azimuthal index 0 
The following results were obtained for the Reynolds number 2280 and frequency 

w = 0.96. 
In the spectral method, some spurious eigenvalues may occur, thus it is necessary 

to look out for their occurrence. It is possible to find eigenvalues with the pressure 
gradient equal to zero in the collocation points and not equal to zero at a boundary. 
These are so-called pressure spurious modes that should be treated in a special way 
(Phillips & Roberts 1993). In the present work, the pressure derivative dA,4/dr was 
calculated for each eigenmode in order to find a spurious eigenvalue. The spurious 
eigenvalues with azimuthal index 0 are shown in figure 1. There is a set of eigenvalues 
when Im(a) < 0. The eigenvalues are pure complex at the limit Re --+ co. For n = 0 
they correspond to the roots of the Bessel function of the first order and the first kind: 
a = fi,u,;J1(ps) = 0 (s =, 1,2, ...). These eigenvalues were found in the asymptotic 
analysis by Gill (1965). They do not cross the real axis when the frequency is changed. 
Equally, this does not mean an instability of a flow. Occurrence of the mode is typical 
for spatial disturbances which are associated with an impact in the upstream direction. 
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-1 0 1 2 3 

a, 
FIGURE 1. Eigenvalues in the complex plane a at n = 0. + - spurious pressure eigenmodes. 

The arrows show the split directions of the ‘acoustic’ mode. 

For the purpose of subsequent data presentation, we label two eigenvalues A and 
B. Eigenvalue A is apart from the main group of eigenvalues, as is eigenvalue B, 
which does not belong to the main group but represents a set of eigenvalues close to 
the imaginary axis. 

There are two eigenvalues that are very close to the point a = 0. The negligible dis- 
tinction between them can be explained by the accuracy of the numerical procedure. 
These eigenvalues correspond to an incompressible limit of the acoustic waves (a  = 0) 
spreading in the upstream and downstream directions. To distinguish the ‘acoustic’ 
modes, we considered a slightly compressible isothermal gas. In (2.1), an additional 
term M28p/dt occurs, where parameter M is the Mach number. In figure 1, the arrows 
show the split directions of the eigenvalues when the Mach number increases. Calcu- 
lations with M = showed that other eigenmodes were not susceptible to the 
effect. At the same time, the acoustic mode could be considered numerically. In the 
acoustic mode, a * oM and p * w / M  in most of a flow, as it must for acoustic waves. 

The eigenvalues for the first, least-stable eigenmodes are given in the table 2. The 
eigenvalues are written in the same format as the results for N = 60 and N = 120. 
There are two families: torsional and meridional modes. The torsional modes have 
u, w, p equal to zero and the circumferential velocity component u is not equal to zero. 
The meridional modes are opposite: u = 0 and the other velocity components and 
the pressure disturbance are not equal to zero. The eigenvalues of these two families 
are very close. The longitudinal velocity component of the least-stable meridional 
eigenmode is shown in figure 2. 

2.2.2. Azimuthal indices 1, 2 and 3 

The numerical results for n = 1,2 and 3 are presented in table 3. The results are 
the same for N = 60 and N = 120. The character of the eigenvalue location in the 
complex plane c1 when n = 1 is shown in figure 3. The eigenvalue maps for n = 2 
and 3 are similar. In figure 3 we distinguish two neighbouring groups of eigenvalues 
(denoted as 1 and 2), and label the distant eigenvalues A,B,C and D. In principle, the 
eigenvalue C represents the eigenvalues along the imaginary axis. 
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~~~~ ~~~ ~ 

Number of M a )  Im(a) Type of 
eigenmode eigenmode 

1 1.0179142 0.6206459 x lo-' M1 
2 1.0179143 0.6206472 xlO-' T1 
3 
4 
5 
6 
7 
8 
9 
10 

,0754886 
.0754915 
.1324143 
,1323954 
,1883721 
,1883601 
.2430636 
.2434624 

0.13105881 M2 
0.13105898 T2 
0.20770561 T3 
0.20772219 M3 
0.29232825 T4 
0.29247350 M4 
0.38525837 T5 
0.38575800 M5 

11 1.2962040 0.48683492 T6 
12 1.298493 1 0.4871 6030 M6 
13 1.3530214 0.5928706 M7 
14 1.3475094 0.597383 1 T7 

TABLE 2. Eigenvalues for the first, least-stable eigenmodes, n = 0. Re = 2280; w = 0.96. 
M - meridional eigenmode; T - torsional eigenmode. 

0 0.2 0.4 0.6 0.8 1 .o 
r/a 

FIGURE 2. Eigenfunctions of the least-stable modes n = 0,1,2,3; longitudinal velocity component. 

We have not found spurious eigenvalues among the disturbances of the modes 
considered. The first eigenfunctions are shown in figure 2. 

3. The receptivity problem in pipe flow 
3.1. Formulation of the problem 

Let us consider a laminar flow in a circular pipe with a periodic blow-suction forcing 
the flow through a slot. It is necessary to determine disturbance behaviour in the pipe 
downstream from the slot. We suggest that the forcing amplitude is sufficiently small 
and we may use the system (2.8) for the disturbance with a prescribed frequency. 
Only one harmonic with respect to time t and angle 9 is considered. Thus, the 
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-1 1 2 

B, 

FIGURE 3. Eigenvalues in the complex plane CI at n = 1. 

solution is assumed to be in a form cc exp(in9-iot). For the harmonic, the boundary 
conditions imitating the periodic blow-suction through a narrow slot of width d, have 
the following form: 

where f(z) is the shape function of the velocity disturbance on the wall. 

the problem can be solved by using the Fourier transform 
We assume that disturbances decay in the downstream and upstream directions, so 

@(r;a,) = [I#(r;z)e-iauzdz. 

From (2.8) we obtain a system of ordinary differential equations that is written in the 
form 

dA, d2A 
dr dr2 

ia,A, = HIA,  + H 2 - -  + H~---!!. 
We write the boundary conditions on the wall as 

(3.3) 

where 

@(a,) = [~f(z)e-iauzdz. (3.5) 

The solution of the system (3.3) at the centreline must be finite; this restriction may 
be written as in (2.13)-(2.16). 

After solving the problem in terms of A,, we obtain the solution in the physical 
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domain as the integral 

A(r; z )  = - A,(r; a,) eiaoz da,. 
2n ' Jm  -a 

The main difficulties are associated with evaluation of the integral in (3.6). To analyse 
the behaviour of the solution at some distance from the slot, it would be useful to 
develop an appropriate procedure to present the solution as a sum of the normal 
modes with known amplitudes. 

3.2. Biorthogonal eigenfunction system 
We introduce the following biorthogonal system of eigenfunctions {Aa, B,)  : 

dA d2 A, 
dr dr2 

iaA, = HIA, + H 2 L  + H 3 - ;  (3.7) 

r = 1 : A,1 = Aa3 = A,s = 0 ;  

d d' 
-&Ba = rH;B, - -(rH;B,) dr + @(rH;B,);  (3.8) 

r = 1 : BO12 = Ba4 = Ba6 = 0. 

In (3.8), '*' denotes an adjoint matrix; the overbar indicates a complex conjugate. 
The problem (3.7) is a regular direct problem of the normal mode analysis; it was 
considered in 92. The problem (3.8) is an adjoint one. 

The following orthogonality relation is valid : 

where d,, is the Kronecker symbol. From (3.3) and (3.8) we obtain the relation 

(A", Ba)i(au - a) - (H2Au3 Ba)r=1 = 0, (3.10) 

which will be used in the analysis of the integral (3.6). The boundary conditions for 
the numerical solution of the adjoint problem are described in Appendix B. 

3.3. The receptivity problem solution 
We assume that the biorthogonal eigenfunction system {A, ,  B,) is a complete one; 
thus solution (3.6) may be written as the sum 

A,eiaur da, = CaAaeia' 
A = - - /  l W  

2n --a, 
a 

(3.11) 

Application of the orthogonality relationship (3.9) and (3.10) gives the amplitude 
coefficient C, : 

(3.12) 

For z > 0 we can use an integration path in the complex plane a, as shown in figure 
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FIGURE 4. Sketch of the integral path in the complex plane a, for z > 0 and z < 0. 

4 when the radius of the circle R, tends to infinity; and the input of the mode a from 
the upper semi-plane is equal to 

c, = -e(a)B,3(r = I), (3.13) 

where the explicit form of the matrix H Z  is taken into account. The final result for 
the longitudinal velocity disturbance component is written as 

w(t, r, 9, z )  = -Re e(a)B,3(r = 1) eioczfin'-iwt 

3.4. Numerical results 
We introduce the receptivity coefficient RC,: 

RC, = e(a)B,3(r = 1). 

(3.14) 

(3.15) 

The coefficient depends on normalization of the eigenfunction A,. Since in our 
normalization the maximum longitudinal velocity amplitude was chosen equal to 1, 
the coefficient gives the initial amplitude and the phase of the velocity component. 
Its value depends on the shape function f(z). As an example of the shape function 
f(z) in (3.1) we choose a step function, thus @(a) = 2sin(ad/2)/a. In our numerical 
examples, the function @(a) = d for d < 0.5 and the results referred to d are almost 
independent of the slot width in the range of d. 

For the case of the azimuthal index n = 0, we took into consideration 24 least-stable 
meridional eigenmodes. The result of the receptivity coefficient calculation for this 
mode, without taking into account the acoustic mode input, is shown in figure 5. 

The two values labelled A and B correspond to the eigenvalues A and B shown in 
figure 1. The other meridional modes are numbered in accordance with the value of 
x i .  The result illustrates that the least-stable eigenmodes are not excited by the forcing 
flow through the wall and the maximum excitation exists for eigenmode 17 with the 
eigenvalue a = 1.641 + i2.416. The real and imaginary parts of the longitudinal 
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pg 
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. , . , . , ‘ I .  ; 5 10 15 20 5 

Number of the meridional mode 
FIGURE 5. Receptivity coefficient. n = 0. d = O.l(o); 0.3( x); 0.5(+). 

0.10 

0.05 

w o  

-0.05 

-0.10 

-, 

I I I 
0 0.2 0.4 0.6 0.8 1 .0 

r/a 

(a)  W w ) ;  (b)  Ww). 
FIGURE 6.  The longitudinal velocity component of meridional eigenmode 17 ( n  = 0). 

velocity component w of eigenmode 17 are shown in figure 6. The maximum of the 
velocity disturbance is close to the wall, while the least-stable eigenmode (figure 2) 
has its maximum at the centreline. 

The receptivity coefficient for the azimuthal index n = 1 is shown in figure 7(a). 
There are four values A,B,C and D corresponding to the distant eigenvalues in figure 
3. The modes corresponding to the first family have a bigger response than those 
from the second family. 

The result for RC, when the azimuthal index n = 2, is shown in figure 7(b). The 
most efficient excitation exists for eigenmode 9 of the first family at c1 = 1.604+i0.824. 

The receptivity coefficient for the azimuthal index n = 3 is demonstrated in figure 
7(c) .  The maximum value of the coefficient corresponds to eigenmode 10 of the first 
family at a = 1.639 + i1.08. The results show that the most efficient eigenmodes 
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FIGURE 8. Longitudinal velocity component of the forced disturbance. 
(i) z = 6.6; (ii) z = 8.6. (a )  n = 0;  (b) n = 1; ( c )  n = 2; ( d )  n = 3. 

excited in a pipe flow have the maximum velocity disturbance relatively close to a 
wall, while the least-stable eigenmodes have the maximum close to the centreline. 

Far from the slot the disturbance field may be described by a finite number of 
least-stable eigenmodes, because the others will decay significantly; and the number 
of eigenmodes that must be taken into account depends on the distance from the slot 
and on their initial amplitudes. To imitate an experimental observation in a pipe flow, 
we considered two stations: z = 6.6 and z = 8.6. The results for n = 0 (without input 
from the acoustic mode), 1, 2 and 3 are shown in figure 8: 24 least-stable meridional 
eigenmodes were taken into account for n = 0; 40 eigenmodes were taken for n = 1 ; 
42 for n = 2 and 45 for n = 3 respectively. 

Acoustic mode excitation depends on an instantaneous mass flux through a slot. 
If the mass flux is equal to zero, the ‘acoustic’ amplitude is also equal to zero. In 
our example given for the step function, the instantaneous mass flux is not equal to 
zero and the acoustic mode is excited by a source having an amplitude much bigger 
than the amplitude of the hydrodynamic modes. The ‘acoustic’ mode distribution at 
z = 6.6 is shown in figure 9. 

4. Summary 
The global eigenvalue problem for pipe Poiseuille flow was treated by using the 

collocation method based on the Chebyshev polynomial expansion. The numerical 
method is identical to the method of Khorrami et al. (1989). 

Receptivity analysis carried out for forcing through a wall slot shows that the 
least-stable eigenmodes cannot be excited efficiently. There are some more stable 
eigenmodes that have an efficient response to the forcing. A Physical explanation is 
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FIGURE 9. Acoustic mode response at z = 6.6. 

that blow-suction through a wall cannot strongly disturb the flow at the centre, so, 
for the most part, it generates disturbances localized near a wall. The more stable 
disturbances are localized closer to the wall. The more stable a mode, the more 
oscillating a character it has across a pipe. We can expect that there is a mode with 
the most effective response to blow-suction through a wall. 

Because the more stable axisymmetric and non-axisymmetric eigenmodes have the 
maximum longitudinal velocity component close to the wall, we should observe a shift 
of the maximum towards to the centre during the downstream development of all 
the perturbations. This result explains the non-similar character of the disturbances 
observed by Leite (1959) in different locations along a pipe. We want to emphasize 
that we deal with a number of eigenmode excitations and a general picture and a 
decaying rate could not be explained in terms of one eigenmode at a reasonable 
distance from a slot. 

The numerical example does not allow us to illustrate possibility of transient 
growth when blow-suction through a wall is used. First of all, we considered only 
the step function for velocity distribution in a slot. Secondly, we could not consider 
the perturbations which are closer to the slot. To consider the perturbations in the 
vicinity of the slot we need to take into account a lot of damping eigenmodes, so the 
numerical procedure becomes too complicated. 

Further theoretical and experimental investigations of pipe flow at the linear stage 
are necessary. We suppose that any future experimental work should be done 
simultaneously with an appropriate analysis of the flow receptivity with respect to 
the method of generation used. For example, blow-suction periodic with respect 
to time through a wall may be used. It will be necessary to measure the velocity 
disturbances downstream of a slot by using facilities similar to those used by Cohen & 
Wygnanski (1987) for disturbances in an axisymmetric jet. They measured the phase- 
locked velocity disturbances as a function of time by using eight hot-wires at different 
locations across a jet. The measurements allowed the decomposition of a signal to be 
carried out in order to obtain the disturbance distribution corresponding to different 
azimuthal indices. The main difficulty in an experiment with blow-suction through 
the pipe wall will be associated with the measurement of the velocity profile at the 
edge of the slot. Based on investigations in boundary layers (Ivanov & Kachanov 
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1994), we can suggest that some kind of a vibrator placed on a wall would be more 
preferable. In such a case, the method of the receptivity problem solution will be the 
same but the boundary conditions (3.1) will change their form as in the boundary 
layer case (Tumin & Fedorov 1984). 
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Appendix A. Non-zero elements of matrices H I ,  H2 and H3 

H:2 = 1; 

- iwRe; H:2 = Re W ( r ) ;  H:5 = -. HI1 = ____ 
r2  r2 ’ 

2in (n2 + 1) 

Appendix B. Boundary conditions for the numerical solution of the adjoint 
problem 

The numerical method used for the adjoint problem is, at the same time, the 
spectral collocation method. For the numerical procedure we have to formulate the 
boundary conditions at r = 1 and r -+ 0. 

The boundary conditions at r = 1 are written in (3.8). For the numerical treatment 
we have to use some additional conditions that follow from the equations. From the 
sixth equation of the system (3.8) we obtain 

Bus = 0. (B 1) 

From the second equation we have at r = 1 
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The other boundary condition at r = 1 follows from the fourth equation of the system 
(3.8) : 

- = 0. dB,2 
dr 

Thus, we formulate the following boundary conditions at r = 1: 

r = 1 : Ba2 = B,4 = Ba5 = Ba6 = 0;  ) 

At r -+ 0 the solution must be finite. If we consider the axisymmetric mode (n  = 0), 
we obtain Ba2 = 0 from the fourth equation. From the third equation it follows that 
BL4 = 0, and from the fifth equation we find Ba6 = 0. Hence, the sixth and the second 
equations give Bus = 0 and BNI = 0 respectively. From the first equation we have 

3d2B,2 dB,3 
- _- +----0. 

2 dr2 dr 

Finally, we formulate the boundary conditions for the axisymmetric mode at r --t 0: 

n = 0 ;  r -+ 0 : Bal = Ba2 = BUS = Ba6 = 0; ) 

(B 6) 
3 d2B,2 dB,3 

+--=0, 
2 dr2 dr 

dBE4 
dr 

__ =o.  

From the sixth equation for the indexes n = +1 we determine that Ba4 must be 
equal to 0; from the fifth equation we have at r -+ 0: Ba6 - inBa2 = 0. The first and 
the fourth equations give two conditions: BL2 = BA6 = 0; and from the fifth equation 
it follows that Ba3 must be equal to zero. If we subtract the second equation from the 
sixth equation with the factor in, we find that inB,s + B,, = 0 at r --t 0. To summarize 
the boundary conditions we can present them as 

n = +1 r -+ 0 : Ba3 = B,4 = 0; 

Ba6 - inB,2 = 0; 
Bnl + inB,5 = 0. 

From the first, third and fifth equations for the indices In( 2 2 we obtain that 
Ba2 = Bn4 = B,6 = 0 at r --+ 0. From the sixth equation it follows that Ba5 = 0, and 
the second equation also gives Bml + Re-'BL4 = 0. The fourth and fifth equations give 
B,3 equal to zero. Thus, the boundary conditions are written as 

In1 2 2 r + 0 : BU2 = BN3 = Bn4 = BX5 = Ba6 = 0; 

I 
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